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EXTENSION OF LEADING-EDGE-SUCTION ANALOGY TO WINGS
WITH SEPARATED FLOW AROUND THE SIDE EDGES
AT SUBSONIC SPEEDS

By John E, Lamar
Langley Research Center

SUMMARY

This paper presents a method of determining the lift, drag, and pitching moment for
wings which have reattached flow around the leading and side edges. The method is an
extension of the leading-edge-suction analogy of Polhamus applied to the side edges. The
value of the term associated with the lift contribution of the reattached flow from the side
edges Kv,se has been found to exceed that of the leading edge for rectangular wings of
aspect ratio less than 2. Limiting values of Kv,se have been determined for rectangular
wings. Comparisons of the results of this method with experiment indicate reasonably
good correlation of the lift, drag, and pitching moment for a wide planform range. The
agreement of the method with experiment was as good as, or better than, that obtained by
other methods.

INTRODUCTION

Many current and proposed aircraft and missiles designed for high-speed flight
employ highly sweptback and tapered low-aspect-ratio wings with sharp or thin edges.
These planforms exhibit flow separation along the leading and side edges followed by
subsequent reattachment downstream or inboard, respectively, over a large angle -of -
attack and Mach number range. However, the effect of this separated-flow (commonly
termed vortex flow) phenomenon is more important at subsonic speeds because of its
larger contribution to the total aerodynamic characteristics. Polhamus in references 1,
2, and 3 has shown that, for a variety of pointed-tips planforms and Mach numbers, the
contribution of the leading -edge vortex to the lift and drag can be accounted for by what
is termed the leading-edge -suction analogy. The application of this analogy requires
only that the attached-flow leading-edge suction, available from inviscid theory, be known
accurately.

It is evident that the separated flow around the tips or side edges of swept and
unswept lifting surfaces has essentially the same behavior as that around the highly
swept leading edge. Consequently, it should be possible to predict the effect of side-edge



vortices on the aerodynamic characteristics of low-aspect-ratio planforms by an analy-
sis similar to those used to treat the leading edge. The purpose of the present paper
will be to detail how one such extension to the leading -edge -suction analogy can be
effected. The one new element required in this extension is the attached-flow side-edge
suction force and its derivation is presented.

Total-force and total-moment predictions, including both the leading - and side-edge
suction-force contributions, have been made for a variety of planform shapes and are com-
pared with previously published data and new subsonic wind-tunnel data. Also, a discus-
sion of some other methods which attempt such predictions (refs. 4 to 11) will be given
and comparisons with the present technique are made where possible.

SYMBOLS

Values are given in both SI Units and U.S. Customary Units. The measurements
and calculations were made in U.S. Customary Units.

R aspect ratio
B; (xi) coefficient of nz(j‘l) at xj of the spanwise curve fit of equation (12)
b span, cm  (in.)
Cp drag coefficient, Drag
Qoo Sref
Cp,0 experimental value of drag coefficient at C; =0
ACp drag coefficient due only to lift, Cp - Cp g
cL lift coefficient, —Lift
QeoSTef
aC
_ L
Lo = Fa
Cm pitching-moment coefficient about the reference point, unless otherwise
c .
stated it is located at —Lef ~Pitching moment
4 dooSrefCref
Cn normal-force coefficient, Normal force
dooSref




c streamwise chord, cm (in.)

c(n) streamwise half chord at 7, cm (in.)

d(n) x-location of local midchord with respect to half root chord, cm (in.)
F tip suction force from one side edge, N (1bf)

G(x) defined by equation (2), m3/2/sec (ft3/2/sec)

j index ranging from 1to p

K, = 3(CN,p)

- 9(sin a cos a)

8<2 Leading -edge suction force from one side>

S
Kv,le = qoo' ;ef
9 sin® a
3 2 Tip suction force from one side edge)
— YooSref
Ky se = =

9 sin2 @

Ky tot = BK 1o + K ge

M Mach number of free stream
N maximum number of chord loadings in modified Multhopp solution
n index ranging from O to N -1
a,(n) . . L e .
q coefficient of chordal loading function in modified Multhopp solution, m (ft)
o0
£ : / 2 / 2
Qoo ree-stream dynamic pressure, N/m*“ [lbf/ft
R Reynolds number

Sref reference area, m?2 (ft2>



s(x) distributed edge suction force (see eq. (1)), N/m (lbf/ft)

U free-stream velocity, m/sec (ft/sec)

u induced velocity in the X-direction at a point (x,y), m/sec (ft/sec)
v induced velocity in the Y-direction of a point (x,y), m/sec (ft/sec)
X,¥ distances from a coordinate origin located at the leading -edge apex;

X positive downstream and y positive toward right wing tip

AX distance along tip chord, cm (in.)

o angle of attack, degrees

B=1-M>2

r accumulated circulation at a point (x,y) (see eq. (5)), mz/sec (ftz/sec)
¥ distributed bound vorticity at a point (x,y) (see eq. (6)), m/sec (ft/sec)
5 distributed trailing vorticity at a point (x,y) (see eq. (4)), m/sec (ft/sec)
n nondimensional spanwise variable, 2y/b

9 chordwise angular variable (see eq. (9)), degrees

Ox; 6 value which yields xi in equation (9)

A leading -edge sweep angle, positive for sweepback, degrees

by taper ratio, ct/cp

£ fraction of local chord

p density, kg /m3 (slugs /ft3>

Q trailing -edge sweep angle, positive for sweepback, degrees




Subscripts:

c centroid

i particular item of location
le leading edge

n notch

P potential or attached flow

r root

ref reference

se side edge

t tip

te trailing edge

tot total

vle vortex effect at the leading edge
vse vortex effect at the side edge

THEORETICAL DEVELOPMENT

The concept embodied in the leading-edge -suction analogy of Polhamus is developed
in reference 1. However, to aid in illustrating the application to other edges, the pri-
mary ideas are briefly reviewed.

Wings which have attached flows develop suction forces along their leading edges
if the stagnation surface does not lie along that edge. This suction force can be envi-
sioned as arising by either of two processes: (1) the pressure near the leading edge
acting over the edge thickness or (2) the product of the square of the induced tangential
velocity and the distance to the edge. For a wing of infinitesimal thickness the induced



tangential velocity approaches an infinite value of u(x,y) as shown in sketch (a);
however, its product (described above) is still finite,.

U k
NORMAL FORCE
LEADING-EDGE THRUST Q
[]
1

NORMAL FORCE
A

, SIDE- EDGE
]
I

SUCTION FORCE

SIDE- EDGE
SUCTION FORCE

Sketch (a)

If the flow separates from the wing in going around the leading edge due to its
sharpness or thinness, or due to a combination of thickness and angle of attack, the suc-
tion force in the chord plane is lost. However, if this separated flow forms into a shed
vortex which causes the flow to reattach to the leeward surface of the wing, then the
energy redistributes on the upper surface near the leading edge and consequently the
force acts in the normal-force direction. By making the edge sharp this additional nor-
mal force can be generated at almost all angles of attack.

According to the analogy, the reattached line or details of the pressure field need
not be known in advance in order to determine the reattached-flow force. However, if
pitching-moment estimates are needed the distribution of the reattached force must be
known. The centroid of the leading-edge suction has been used as the longitudinal loca-
tion of this force. This assumption does not have provision for angle-of -attack effects
on the location of the reattachment line or vortex core, hence the core is assumed
to remain stationary near the wing leading edge.

From the above outlined ideas it can be seen that the conditions which lead to this
additional normal force would not necessarily be limited to wings with separated flows
around the leading edge but could be applied to any similar situation where, in potential
flow, an edge suction force would be produced. Sketch (a) also shows, for example, that
along the side edge of a finite streamwise tip chord large values of v(x,y) are produced




due to flow around the side edges. These in combination with the infinitesimal thickness
that lead to them would produce a finite suction force in the Y-direction (side-edge suc-
tion force, plus or minus depending on the edge). Hence, all that is required to employ
a generalized suction analogy to the side edges is to determine the attached-flow side-
edge suction force.

A mathematical procedure for computing this side force is developed in the follow-

ing steps. Figure 1 illustrates graphically selected steps for a typical wing at a partic-
ular chordwise and spanwise location,

(1) The suction distribution along an edge per unit length is obtained from refer-
ence 12 to be of the form
s(x) = prG(x)2 (1)
where for side-edge or tip suction the term G(x) is interpreted as
G(x) = \[3 lim VT =7 vi,y) (2)
’)7—»
where v(x,y) is the perturbation velocity in the Y-direction.

(2) The velocity v(x,y) is related to the trailing vorticity by

v(x,y) = 3 6(x,y) (3)

(3) The trailing vorticity of a particular x-position X; is determined by

é(xi,y) _ al"(xi,y) _ % 3F(Xi,77)

oy on
where
Xi X1
lxpy)=) © r&ydx=2)  ulx,y)dx (5)
Xle Xle
See figure 1.

(4) The subsonic bound-vorticity distribution is represented herein by

N-1

=U_12 Z cos nf + cos(n + 1)8 In{")
Y(X)Y) 2 W T 0 Sin 9 qoo (6)
n=

which is employed in a new version of the modified Multhopp lifting surface solution of
reference 13,



Qn(n)
q

00

(5) Upon obtaining solutions for the
equation (5) becomes

terms from the method of reference 13,

X.
i N-1
(xi,y) -1 Z cos né + cos(n + 1) anp(n) dx 7
U nc(n) ~ sin 6 9.
Xle 7
or
O
1 N-1
T(xi,y) =1 Z E:os nd + cos(n + l)fﬂqn—(n)- de (8)
U T qoo
0 n=0
where
X = Cz_r - ¢(n) cos 6 + d(n) (9)
and
dx = c(n) sin 6 d9 (10)

Upon integrating, the result of equation (8) is

F(Xi, y>
U

N-1
qn(n)[—sin nf . sin(n + 1)6}

Ox; qp(n) Oxi
i 0 . 1
—0 6
1 | o ] + [+s1n]0 (11)
n=

=1
™ 0 Qoo

(6) Knowledge of the T(Xi,Y) distribution at discrete points is not sufficient for the
5T (xy,y)
on
knowledge of the continuous variation of the

variation which is needed. This requires a
ap(n)
v o)
spanwise distributions of these terms are assumed to be composed (of a)sine series,
I(x4,m

present analysis since it is the

terms, In the Multhopp solution the
which is expressible as an even power series in 7. Hence, the values com-

puted by equation (11) will be curve fitted at each x; location with

—F(’%’n) =2 V1 - UZ![-BI(Xi) + Bolxi)n? + . . .+ Bp(xi)ﬁ?‘(p‘lj (12)

where the B;j (Xi) values are determined in the fitting process. Four terms in the series
were determined to represent adequately the FX# distribution in a least-squared
sense,




(7) Hence, the differentiation of equation (12) with respect to 7 leads to

d

- ——1" 2@1(&) + Ba(xi)n + By(xy)n* + B4(Xi)”ﬂ (13)
Vi

As n — 1 the first group of terms - 0 and the second group - -«. Therefore, it is

only these last terms in combination with their multiplier which can contribute to the
1

1-772

suction, Setting 7 =1 in all the terms except those multiplied by results in

lim BF(xi,n) = lim {-

bU =
bm —%7 = Im N—I—T’——_Z(Bl(xi) + Bz(xi)nz + B3<xi>774 + B4(xi)776“> (14)
- - Pl |

(8) Substituting equation (14) into equations (4) and (2) results in

G(xi) = - %gnml —“"72
=14 -7

[Bl<xi) + B2<xi) + B3(xi) + B4(xi)i\ (15)
Squaring and simplifying leads to

4
2
G(x)2 =200 ) By(xy) (16)

2
4
2
s(xi) =pU1§ i Z Bj (i) (17)
j=1
or
4 2
s(xi) = q“;;b” Z Bj(xi) (18)
j=1




(10) The magnitude of the tip suction force from one edge can be found by

F = S‘Xte,t
- S(X'1> dx (19)
Xle,t
or, in coefficient form
Xte,t 4 2
¥ b Z
= Bi(xi)| dx (20)
USref  8Sref i=1 ]( 1>
xle,t
(11) Inasmuch as s(xj) depends on [:v(x,y)]2 and since v(x,y) is linearly
dependent on the values of qn(n), which are dependent on sin @ or « (in radians) for
o0
small angles of attack, then s{xi> depends on sin? a. Hence, the partial derivative
with respect to sin2 @ can be taken of F to determine a Ky-type term analogous

QeoPref
to that obtained for the leading-edge-suction force in reference 1. Therefore the equa-

tion defining Ky ge may be written

[oosre

5} Sll’l2 a

Ky,se = (21)

With the determination of the attached-flow side force and by use of the generalized
suction analogy, the magnitude of the additional normal force associated with the sepa-
rated flow around the side edge can be found and its contribution to the static longitudinal
aerodynamic characteristics can be taken into account. For example:

Cy,=Kpsina cos? a + (Kv,le + K\,,Se)sin2 a COos a (22)
or
Cy=Kysina cos? a + Ky tot sin? o cos @ (23)
ACp = Cy, tan a = Ky sin2 o cos @ + Ky tot sind o (24)
and
Cm = Ky sin @ cos « Xp +K sin? o Fle + K sin2 o Xse (25)
m =P Cref  Vle Cref ~ V»S€ Cref

10




where the particular X-terms equal
Xref - Xc,i
Appropriate simplifications can be made if only the leading or side edges are sharp.

The procedure is computerized and is available from COSMIC as NASA Langley
computer program A0313.

BEHAVIOR OF Ky ge

The behavior of Ky ge Will be studied by examining the important parameters
which affect its variation. They must include planform variables along with Mach number
since both affect the span loading and, consequently, K, ¢o. The planform variables
associated with unswept or swept wings having streamwi’se side edges will be considered.

Unswept Wings

Straight trailing edge.- The geometric parameter defining rectangular wings is, of
course, the aspect ratio. Values of KV se were computed based on the described pro-

cedure and the results are presented in figure 2 as a function of this parameter. The fig-

ure shows a rapid decrease of K, ., (solid curve) with increasing BA&R to the extent
bl
that for BAR = 2 the value of KV se Wwas only approximately one-half of the value at

BMR = 0. The procedure by which the limiting values of KV
sented next. ’

se are determined is pre-

The KV se limit as AR — =« is easy to establish because with the reference area

also — < and the side edge forces remaining finite, KV se ™ 0. However, in order to
establish the KV se limit as MR - 0 it is necessary to refer to reference 14 where
b

certain stipulations are given for wings of very low aspect ratio. They are: (1) no chord-
wise loading past the point of maximum span and (2) the span loadings are elliptical. For
a wing with an unswept leading edge =nd streamwise tips the maximum span occurs at the
leading edge which according to the first stipulation would require the chord loading to be
impulsive. With the form of the loadings now specified a procedure similar to that already

detailed can be used to determine this KV se value. By employing the CL expression
K
consistent with the prescribed loadings, CL = TTA;O", then KV se = 77.1 If the CL expres-
b

sion of Helmbold (ref. 15) which is

11t should be noted that for AR = 0 this is the same value as for the delta wing
Ky.le given in reference 1. That they are the same is not surprising since the delta
wiﬁg has its sweep angle -90%as MR - 0. Hence, the leading edges are becoming like
side edges and with Kv,le -~ 0 for unswept wings, their totals are identical.

11




Cp = 21 Ra
\/[Rz +4 +2

was used instead, then the values of Ky ge are weighted by an expression which is
valid over a wider aspect-ratio range. The results of these computations yield the

long dashed curve in figure 2 which in comparison with the solid curve shows mostly the
effect of going from an impulsive-type chord loading to a finite-aspect-ratio-wing chord
loading.

To demonstrate the reduction in Ky ge which occurs in going from an impulsive
chord loading to one that is either of the cot g type or constant (see fig. 3), while keep-
ing the span loading elliptical and the aspect ratio near zero, computations were made
using the same procedure as before and resulted in

Kv’se = 1.93

for the cot% loading, and

Ky,se = 1.33
for the constant chord loading.

Figure 4 shows some of the results of a numerical experiment designed to deter-
mine the aspect-ratio limit of the present method as AR — 0, From this experiment
there are several important points to be made in this regard which follow:

(1) The three-dimensional span loadings of wings in this aspect-ratio range are
found numerically to be nearly elliptical, hence the effects seen here are primarily
associated with the change in chord loadings,

(2) The validity of the tip-suction distributions associated with the MR = 0.05 and
MR = 0.0001 wings is suspect since these wings are outside the aspect-ratio range where
the attached-flow method employed would yield reliable results. The validity is ques-
tioned because the near - and far -field drag results did not agree well indicating an
inability of the method to get good chord loadings at these AR values.

(3) The AR = 0.1, 0.2, 0.3, and 0.5 wings had acceptable agreement between the
two induced drag results, hence the chord-loading solutions can be assumed to be theo-
retically correct. Because of the above points the present theoretical prediction of the
v,se shown in figure 2 has been adjusted between BAR = 0.10 and 0 to fair into =7
at BMR =0 by extrapolating the theoretical curve to the SR = 0 value from slender-
wing theory.

Figure 5 presents the variation of BKp, BK, 1o and K| {4 with BMAR. The
b
BK_  curve is well known (as BCLa> and will not be discussed. It is interesting to

note that at BMR = 2 the value of BKV 1 is about equal to the computed value of KV
b

€ ,S€e

12




in figure 2, and with increasing SR, the value of BKy je becomes larger than K/
The total of BKy le and Kv,se stays within a +10-percent band about 7 for the
BMAR range considered; consequently, to a good approximation, K v,se =7 - BKv,Ie in
this BAR range.

,5€’

Notched trailing edge.- The discussion so far about the general behavior of SKy ge
with BMAR and its limits for rectangular wings is applicable to wings with notched trailing
edges. Some variations occur in between the limits reflecting the changes in side- and

trailing -edge geometry. A reason for considering wings of this type was to determine if
more side-edge vortex lift could be obtained for a given span and area,

The major difference in the computation of the tip suction for these wings, as com-
pared with those having straight trailing edges (although different, it poses no problem),
is that these wings can accumulate all of the chord load at the inboard span stations (due
to shortened chord) ahead of the tip trailing edge. This makes TI'(x,n) constant for all
chord stations aft of the notch in the spanwise curve fitting of T'(x,7) — a part of the tip-
suction computational process — and is illustrated in figure 6. (Because the potential-
flow solution uses only a continuous chord description, the inner streamwise edge of the
notch is not treated streamwise but at some sweep angle, This causes, in figure 6,
the E{@ not to be totally unchanged aft and inboard of the notch,

One aspect of the notched-wing edge suction that tends to be confusing is the lack
of edge suction along the inner edge. To understand this lack of suction it must be

remembered that for a suction force to be present along an infinitesimally thin edge the
. pe s . or (Xim)
tangential flow at the edge must approach an infinite value. This means that —
Ul
. . BF(Xim)
or v(xi,n) - 1% along the inner edge, but figure 6 clearly shows that

o
- - as 7 - 1. Hence, no inner edge suction is produced for the notched vying
examined.

only

In order to show an example of the changes which can occur in Ky g¢ and Ky tot
as a result of forming a notched wing (see sketch (b)) from a rectangular one by extending
the side edge 10 percent and removing area at the trailing edge to keep the same aspect
ratio the following table was prepared for M = 0:

Planform: R =1 Ky se Ky tot
Rectangular 2.1255 2.9071
Notched 2.3863 3.1650
Percent change 12.3 8.9

13



F=0
} !

b —d | I |

Sketch (b).- Rectangular and
notched wings, MR =1,

For this aspect ratio Kp and Kv,le fall off slightly in going from a rectangular to a

notched wing, however, for « > 6° the larger Ky, tot of the notched wing is sufficient

to cause its Cy, value to exceed that of the rectangular wing and thereafter remain

larger,

Swept Wings2

The K, ge variations for wings with leading-edge sweepback, streamwise tip
2
chords, and unswept or swept trailing edges called cropped deltas and either cropped
diamonds or arrows, respectively, are considered.

Cropped deltas.- Cropped-delta wings are defined in terms of aspect ratio, leading-

edge sweep, and taper ratio. The effect of varying these geometric parameters and
Mach number on Ky se and Ky e is given in figure 7 and their sum at M =0
appears in figure 8. From figure 7 the following effects were noted for three separate

sets of independent variables:

Set b A R M K, ,se Ky Jle
1 Constant Increasing | Decreasing | Constant Increasing | Decreasing
Increasing | Constant Decreasing | Constant Increasing | Decreasing
Constant Constant Constant Increasing | Increasing | Increasing

Although there is a wide variation of Ky ge and Ky ]e Wwith the geometric parameters,
shown in figure 7, their sums fall within a 10-percent band around 7 (see fig. 8).

2Reference 16 found two separate vortex systems for a rectangular wing, but for
swept cropped wings the tip-vortex system merges with that from the leading edge to
form only one system at a low angle of attack,

14




It is interesting to note that the number w keeps appearing in suction analogy
considerations —~ as a limiting value at R =0 (Kv ge for unswept-leading-edge wings
and Ky Je for delta wings), as an approximate totaf of Kyse and Ky e for the
unswept -leading -edge wings and cropped deltas over a range of aspect ratio, or as half
the two-dimensional value of Ky le.

Cropped diamonds and arrows.- The cropped-diamond or cropped-arrow wings are

defined by the same geometric parameters as the cropped deltas with the addition of
trailing-edge sweep. In order to isolate the trailing-edge-sweep effect on Ky ge the
following study was performed. The wing leading-edge sweep and tip-chord length were
fixed for four different combinations of these parameters and the trailing-edge sweep
angle £ was generally varied from 60° to -60°, The actual tip chord was held con-
stant rather than X since Ky ge has been shown in the section on unswept leading
edges and notched trailing edges to be almost directly related to changes in tip-chord
length., Furthermore, with © varying, the taper ratio defined in terms of ¢, would
be varying for a fixed c;. Hence, the taper ratio is only used at £ = 0° to fix the c;.
The total of Kv,se and Kv,le is presented in figure 9 rather than the separate coeffi-
cients since, along any one of the three curves with a nonzero tip chord, both Ky ge and
Ky 1e have the same general behavior with aspect ratio. This is because the reference
area used to determine the coefficients is the true area which varies widely over the
Q-range. In fact with the leading-edge sweep and tip chord fixed as £ ~ -90° the ref-
erence area — o which causes Ky tot ~0 as AR — 0. Thus, any finite tip or leading-
edge -suction force will yield a zero coefficient,

The variations of Ky tot With three separate sets of geometric parameters are
given in the following table:

Set ®R A ct Q | Ky tot
1 Increasing | Constant Constant Increasing || Increasing
2 Constant Constant Increasing Increasing || Increasing
3 Constant Increasing | Increasing® | Increasing || Increasing
2Although c; is increasing, X\ is constant for unswept trailing
edge.

As an exercise Kv,tot values were recomputed for wings with A = 63° and
Ag=0 = 0.4 over the Q-range using as a reference area that of the £ = 0° wing. The
resultant variation of Ky tot was less than 10 percent.
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MODELS AND TEST CONDITIONS

In order to provide needed data for comparison with the present method, an exper-
imental investigation was conducted. A total of 10 thin flat wings were tested, each
having streamwise tips and symmetrical beveling along the leading and side edges. Six
of the wings had unswept leading edges along with symmetrically beveled trailing edges.
Geometrical descriptions of the models are given in table I. Figures 10 and 11 are
photographs of the models and typical model installations are shown in figures 12
and 13,

The models were tested in the Langley high-speed 7- by 10-foot tunnel at M = 0.20,
4, = 2394 N/m2 (50 psf), and R =~ 4,265 x 108/m (1.30 X 106/ft>. Number 80 transition
grit at a density of ~1 particle/2 mm was added to both sides of each model approximately
2.54 cm (1 in.) behind the wing leading edges and extending to the tips. A bolt-on bal-
ance housing was mounted on one side of the model with a dummy housing mounted sym-
metrically on the other side. (See figs. 12(b), 13(a), and 13(b).) The drag data have
been corrected to a condition of free-stream static pressure acting on the base of the
balance and dummy housings and in the chamber. No blockage or wall-interference
corrections were made due to the small models employed at a low test Mach number.

EFFECT OF EDGE SHAPING ON RECTANGULAR-WING RESULTS

The results predicted by the generalized suction analogy (present method) will be
compared with experimental data for the various models of the investigation. However,
before these comparisons are presented the results of a limited study concerned with
the agreement which can be obtained with wings having different edge conditions will be
discussed. Also, the effect of separation occurring primarily at the side edges and not
the leading edges will also be discussed.

Figure 14 shows the effect of edge shaping on the variation of Cy with « for an
MR =2 rectangular wing. There is not much effect noted (probably due to the low test
Reynolds numbers) except for the unsymmetrical beveled edges which exhibit a camber
contribution to Cp. (Some of the data were converted to Cy from Cp, values at
zero leading-edge thrust.) The best agreement between the present method and previous
experimental data is achieved with the thin rounded-plate model until the leading-edge
flow no longer reattaches to the wing. Reference 16 considers this to occur at « > 15°.
The symmetrically beveled wing achieved the highest test Cy values and was well

predicted even at « > 150,

Reference 17 shows that for an AR = 0.2 rectangular wing the higher values of
Cy, are obtained for a < 37° with a thin flat plate. Hence the best agreement with the
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present method is expected when applied to thin flat wings with symmetrical beveling
along the leading and side edges. (It should be noted that the models constructed for the
purpose of providing data for comparison with the present method had these features.)

Wings with well-rounded leading edges but having separation vortices along the
side edges (due either to symmetrical beveling or attached-flow breakdown due to
exceeding a critical Reynolds number) provide interesting data for comparison with the
present method. This is because all nonlinear effects, which tend to increase the curve
of Ci, plotted against « at a rate faster than that for the attached flow, must be
attributed to the side-edge suction for angles of attack below leading -edge separation,
Such data was found in reference 6 for rectangular wings of various aspect ratio and
compared in figure 15 with the present method. In general, the agreement is good until
the leading -edge flow separates and consequently affects the side-edge vortex effects.

Not only does edge shaping affect Cy and Cp, but the drag coefficient due only
to lift ACp as well. Figure 16 shows the variation of ACp with aspect ratio for
different edge conditions at four different values of Cj,. As expected, for AR >1.0 all

the curves for CL2

7R and attached flow are slightly lower than those for wings with
round leading edges and sharp side edges. They also show that over the entire AR and
Cp, ranges values of ACp due to the round-leading-edge, sharp-side-edge configura-
tions, which retain their leading-edge suction, are lower than those for the configurations
with sharp leading and side edges. In general, at any Cy, for AR <1 the value of
ACp for the round-leading-edge, sharp-side-edge configuration is lower than either
attached-flow drag value due to the nonlinear contribution of Cj, from the tip. Fur-
thermore, for Cyp, = 0.05, 0.20, and 0.35 there are aspect ratios for which the values of
ACp for the configurations with sharp leading and side edges are lower than those for
attached flow, reflecting again the increasing contribution of the side edges as MR
decreases.

COMPARISONS WITH EXPERIMENTS

Unswept Wings

Straight trailing edge.- Figure 17 presents some static longitudinal aerodynamic

characteristics plotted against Cjp, for five rectangular wings ranging in aspect ratio
from 0.2 to 3.0 at a Mach number of 0.2.

In figures 17 to 21 the curves of Cp for zero percent leading-edge suction are
computed by Cp=Cpo+Cptanc with Cp = Cyp, ot and the 100-percent-suction

curves are determined by Cp g + CLz/MR. For these five models some observations
can be made. They are: ’
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(1) The predicted Cjy, variation with « is in reasonable agreement with the
experimental data. If the tip-suction contribution to Cj, had not been included in the
theory, the agreement would have been poor except at AR = 3.

(2) The Cp data are well predicted by the zero percent leading -edge suction and
show the reduction in Cp below that for attached flow at MR =0.2, 0.3, and 0.4, which
is consistent with the results of figure 16.

(3) The Cp, trends are reasonably well predicted for the AR = 0.2, 0.3, 0.4, and
1.0 wings although the predicted values for all except AR = 1.0 show more nose-down
moment than measured. However, it can also be seen that if it were not for the Cm
contribution from the side edge, the predicted moment would go the wrong way.

(4) At MR =3.0 boththe Cy, variation with o and Cy, data show that for
Cy, > 0.4 the leading-edge vortex lift is being lost and also, of course, its contribution
to Cm. This occurs, as for the AR =2 wing discussed earlier, because the leading-
edge flow no longer reattaches to the wing for o = 8°. With the loss in CL,vle the
Cm data now show primarily the effect of the side-edge separated flow.

Notched trailing edge.- The data (again static longitudinal aerodynamic character-
istics plotted against CL) for the notched rectangular wing presented in figure 18 are

predicted well by the present method and illustrate again the significant contribution that
tip suction makes for wings in this aspect-ratio range. In comparing the data for the

MR =1 rectangular wing with these data it can be seen that (as discussed in the section
on the behavior of Kv,se) the values of Cyp, are generally higher for the notched wing
although the lift distributions produce approximately the same C,, variation. The pre-
dicted Cy; for the notched wing is more negative than that for the rectangular wing

(see fig. 17(d)) and only slightly overpredicts the experimental nose -down moment.

Swept Cropped Wings

Taper -ratio variation (deltas).- Figure 19 presents static longitudinal aerodynamic

characteristics as a function of Cjy, for a series of cropped delta wings with variable

A at M=0.6 and A =63° The experimental data are for models which did not have
sharp edges (ref. 18). However, the comparison shows generally good agreement
between the data and the present method. The airfoil employed was the NACA 63A002
which at low Reynolds number develops separated flow due to the small leading-edge
radius. At the higher angles of attack vortex breakdown must be occurring ahead of the
trailing edge to account for the decrease in Cy and increase in Cp. The curves of
the various contributions of Cjp, plotted against « show that with increasing A the
CL,vse contribution increases, as it should. The underprediction of Cp, at the higher
angles of attack and taper ratios, before the occurrence of vortex breakdown, can be
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attributed to the actual shed-vortex system which produces additional induced effects
above that predicted for an assumed core lying in the vicinity of the leading and side

edges. An underprediction of Cj, was also found for sharp-edged diamond wings in
reference 19,

For delta wings of AR = 2, the centroids of leading-edge suction and attached-
flow lift are approximately the same (ref. 20); hence using the attached-flow lift centroid
to concentrate all of the lift for the moment prediction was an acceptable procedure,
This is no longer true if the delta-type wing has a cropped tip for then each individual
loading centroid must be used.

Trailing -edge sweep variation (diamond and arrow).- Figure 20 presents some

static longitudinal aerodynamic characteristics plotted against Cy, for a family of
cropped wings all having A = 63° and the same tip-chord length and tested at M = 0.2,
The models differ in their -values which vary from -40° to 40°, For £ = 0° and -40°
C1, is under predicted, as for the cropped deltas which causes the predicted Cp val-
ues (zero percent leading-edge suction) to be much higher than those experimentally
measured. The Cp data do follow Cp g + Cy, tan & (zero percent leading-edge suc-
tion) where Cj, is the experimental value. The Cp, data are well predicted espe-
cially at = -40°, For = 40° the extra induced effect to lift is lost, as in refer-
ence 19 for the arrow wing, bringing the predictions of the Cj variations with « and
Cp into good agreement with the data. The Cp, data are well predicted for lift
coefficients up to =0.5, after which the data are more positive.

Flow pictures of the leading-edge shed vortex showed that breakdown occurs ahead
of the trailing edge for the cropped-diamond, cropped-delta, and cropped-arrow wings at
a = 259 249, and 22°, respectively., The Cjy, variation with o shows for the respec-
tive models that, above these values of «a, Cy, increases at a slower rate than before.

Arrow wing. - Figure 21 presents static longitudinal aerodynamic characteristics
plotted_against CL for a cropped-arrow wing. In general, the data are very well pre-
dicted up to Cp, = 0.7, after which Cp, falls off slightly and from the Cy, data it
appears that some or all of the contribution from the side edge is being lost. This also
shows up in the Cy, variation with «@. Around Cp = 1.0 the leading-edge-vortex
breakdown occurs ahead of the trailing edge resulting in additional loss in Cj..

COMPARISONS WITH OTHER THEORIES

Other Theories

General. - Theoretical estimates for the effects of separated flow along streamwise
side edges on the aerodynamic characteristics of swept and unswept wings have been
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made by various authors (refs. 4 to 11). Of these the ones most commonly referenced
are Bollay, Flax, and Gersten (refs. 4, 6, and 8, respectively). These along with the
more recent methods of Belotserkovskii (ref, 10) and Bradley (ref. 11) will be briefly
reviewed after which comparisons will be made with the present method and with experi-
mental data.

Bollay. - Bollay's flow model (ref. 4) is associated with a rectangular wing and
assumes attached flow around the leading edge with the flow around the side edge sepa-
rating and trailing off at some angle, nominally «/2, to the free stream. A further
assumption, which agrees well with experiment, is that the span loading is constant. The
resultant formulation retains sinZ @ and sin @ cos @ terms inthe Cy expression
and appears adequate for the extremes of aspect ratio, However, for aspect ratios from
1 to 6 this method overpredicts the experimental Cy. Values of ACp could be com-
puted with Bollay's method but, due to the employment of the mean pressure, Cy, can-
not be determined with the same accuracy. This method was not intended to be used for
wings with sharp leading edges.

Flax. - Flax and Lawrence (ref. 6) use a combination of attached- and cross-flow
methods to arrive at procedures for calculating Cy and Cp interms of the sum of
« -contributions up through a2 for delta and rectangular wings. The coefficient of
@2 in the Ci, equation is taken to be the two-dimensional cross-flow drag coefficient.
Its value is 2.0 for rectangular wings with separated flow around the side edges and
attached flow around the leading edges. The same value is used for thin delta wings.
For rectangular wings with sharp leading and side edges the value of the two-dimensional
cross-flow drag coefficient is replaced by an empirically determined value of 3.0. Flax
and Lawrence state that retaining the trigonometric term in the @2 term to make it
sin2 @, "while more rigorously correct . . ., does not always lead to results in better
agreement with experiment." The Cy, equation, which is empirically developed, has
one linear term in & and two a2 terms. The second a2 term is added to contrib-
ute a2 moment from a force located at the half root chord, which is found in the present
paper to be correct only for MR = 0. Values of ACp could be computed with this
model,

Gersten. - Gersten (ref. 8) employs Bollay's flow model in spanwise strips which
allows him to represent a separated flow about the leading edge for rectangular and
delta-type wings. The flow trails off the surface at half the wing angle of attack result-
ing in a full wake flow over the wing surface. Unfortunately, this does not represent well
the physical flow model of wings with both sharp leading and side edges at least in the
low-to-moderate angle-of-attack range where flow reattachment occurs. Gersten, like
Flax and Lawrence, has equations for Cy, and Cp, which depend on @ and o2
(trigonometric terms neglected) where the coefficients are determined from two

20




contributions: (1) linear theory (attached flow) and (2) nonlinear theory (shed vorticity
all across the wing surface). Values of ACp can be calculated easily with this method.

Garner's method {ref. 9) was developed to be an extension of Gersten's but this
effort was concerned primarily with establishing a similar technique having a different
attached -flow solution.

Belotserkovskii.- Belotserkovskii (ref, 10) solves the separated side-edge problem
by using a discrete vortex lattice which has no trailing leg at the tip but has the bound
filaments trail across the tip and wrap up into a shed-vortex sheet. The effect of the
strength and location of this rolled-up tip sheet is also taken into account, by iteration,
in obtaining a solution. The leading-edge flow is assumed to be attached. Normal-force
and pitching-moment results are computed,

Bradley. - Bradley's method (ref. 11) is based on computing the leading - and side-
edge -suction forces and then employing the generalized suction analogy — similar to the
present methodS — to predict Cy, and ACp for a variety of planforms. The major
difference between the two methods is the potential-flow solutions employed to arrive at
the suction forces. The present method uses a modified Multhopp approach with contin-
uous pressure loadings, whereas Bradley's method uses the discrete loadings of the
vortex-lattice procedure. Limited comparisons made with the two methods for wings
having separated flows indicate that they are in excellent agreement. Pitching moments
could be determined with this method but none were given in reference 11.

Comparisons

Comparisons of predictions — by the previously discussed theories and the present
method — and experimental data are to be made for representative or the complete
series of planforms which have been analyzed and results published.

Figure 22 presents results for MR = 0.2 and 1.0 rectangular wings at M =0 from
the present method and experiment and from the methods of Bollay and Belotserkovskii
(R =1.0 only). The data for both wings are seen to be predicted better with the pres-
ent method over the entire o -range than with the other methods.

Figure 23 shows static longitudinal aerodynamic characteristics plotted against «
at M=0 foran AR =1.0 rectangular wing obtained from the present method and
experiment along with those from Flax, Gersten, Garner, and Belotserkovskii. The
Cy, data are best predicted by the present method over the «-range, however, the
Cm,le data are only best predicted by the present method up to a = 16°. Around this
value of « it appears that the leading-edge vortex core has moved enough to begin to

3Bradley references the original application of the present method to rectangular
wings.
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contribute a noticeable nose-down moment, In addition to this change it would be
expected that the pitching moment from the side edge would be affected by the change in
flow conditions, The present method predicted no pitching -moment contribution from
the leading-edge vortex lift since the reference point was at the leading edge.

Figure 24 presents the Cp and Cp, variations with « for two wingsat M =0
which have A =450, X = 1.0, and aspect ratios of 1 and 2. They were obtained from the
present method and those of Gersten, Garner, and Belotserkovskii along with data from
reference 8. At MR =1 the present method with separated flow assumed at the leading
and side edges predicts the Cp, and Cy, data more accurately than either of the other
methods separately. For the AR =2 wing no one method works well over the entire
o -range, although up to @ ~ 12° the Cy, and Cyy data are slightly better predicted
by the present and Gersten's methods. A comparison of CL,p + CL,vse with wing data
would indicate that the leading-edge vortex lift begins to fall off noticeably for a = 12°,
This could occur for several reasons, the most likely is that the shed-vortex system is
beginning to break down near or ahead of the wing trailing edge.

Zero Aspect-Ratio Limit

At MR = 0.2 the present method yields a value of Ky ge = 2.8 which results in
a good estimation of Cy, and Cy as a function of a. However, a comparison with
Cy data found in reference 4 for AR < 0.2 shows that the method of Bollay (ref. 4)
estimates more closely the experimental results and both Bollay's estimates and the
experimental data are smaller than the present-method predictions. Evidently, for some
aspect ratio between 0.134 and 0.20 the flow no longer reattaches on the upper surface
over any significant angle-of -attack range, as required by the present method, which
results in a pure wake flow and a sharp reduction in the actual value of Ky ge. (Note
that if Ky ge =2.0 fora MR =0 wing a pure wake flow could be implied since this
would be the same value as that for the cross-flow drag coefficient at this aspect ratio,)
Gersten's results (ref. 8) indicate a nonlinear coefficient of =5.9 at AR =0 which is
almost twice the m-result from the present method.

CONCLUSIONS

An analysis of an extension of the leading-edge -suction analogy of Polhamus (NASA
TN D-3767) to wings with separated flow around their side edges is presented. Compar-
isons of predicted and experimental data and other analytical methods have yielded the
following conclusions:

(1) Based on slender-wing theory the value of the term associated with the lift from
the separated flow at the side edges KV se is 7 at zero aspect ratio.
2
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(2) The infinite-aspect-ratio value of Ky 5o is zero.

(3) For rectangular wings with aspect ratio less than 2 the value of Ky ge is
larger than the value of the term associated with the lift at the leading edge Ky ge.
Above an aspect ratio of 2, Ky le is larger than Ky se but for all aspect ratios below
2.8 the totals of Ky ge and Ky )e are very near .

(4) For cropped-delta wings the totals of Ky se and Kye for a wide range of
sweep angle, taper, and aspect ratios varied less than +10 percent about 7; however, both

Kv,se and Kv,le

(5) For cropped wings with leading- and trailing-edge sweep the total of Kv,se
and Ky 1e increases with increasing aspect ratio, leading-edge sweep, trailing-edge

varied widely.

sweep (becoming more arrow like), and tip chord,

(6) The 1ift variation was well predicted over an angle-of-attack range for four
rectangular wings of aspect ratios 0.5, 1.0, 1.5, and 2,0 having round leading edges and
vertical side edges using Ky se as the only separated-flow lift contributor.

(7) Experimental data of pitching moment, lift, and drag for rectangular, cropped-
delta, cropped-diamond, and cropped-arrow wings were predicted reasonably wéll by the
present method. Some drag correlations confirmed predicted drag values below those
of 100-percent leading-edge suction.

(8) Without the side-edge contribution to separated-flow lift and moment, the value
of predicted lift would, in general, be too low and the moments could be more positive.

(9) Sweptback wings which have large amounts of area behind the point of maximum
span develop lift values in excess of those predicted due to additional induced effects
associated with the actual shed-vortex system,

(10) It has been determined that the present method predicts wing static longitudinal
aerodynamic data as well as, or better than, many other methods.

(11) The separated-flow model assumed by the present method is more nearly con-
sistent with the real flow than that of some other methods.

Langley Research Center,

National Aeronautics and Space Administration,
Hampton, Va., July 23, 1974.
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TABLE I,- MODEL DIMENSIONS

Rectangular wings

b ¢y and cCypef Sref Xref
R 2 2

cm in, cm in. m ft cm in,

0.20 25.40 10 127.00 50 0.322 3.47 31.75 12.5
.30 30.48 12 101.60 40 .309 3.33 25.40 10.0
.40 30.48 12 76.20 30 .232 2.50 19.05 7.5
1,00 50.80 20 50.80 20 .258 2.78 12,70 5.0
3.00 76.20 30 25.40 10 .193 2.08 6.35 2.5

Notched rectangular wing

™ b Cr Ct Cref bp Sref Xref
cm |in.| cm in. cm [in,| cm in. em |in.| m? #t2 | em in.
1.00 Ji().SO 20 138,94 {15.33{55.88122 151,99 120.47)15.24| 6 10.258 |2.78}13,00 ;5.12

Cropped-delta wings with c¢p = 25.4 cm (10 in.) and A = 63° (tested at M = 0.6)
(see ref. 18)

® \ b Cref Sref Xref
cm in. cm in, m2 ft2 cm in.
1.64 0.10 22.89 9.01 17.09 6.73 0.032 0.344 12,57 4.95
1.33 .20 20.32 8.00 17.50 6.89 .031 .334 12.27 4.83
1.08 .30 17.80 7.01 18.11 7.13 .029 .316 11.81 4.65
.86 .40 15.27 6.01 18.87 7.43 027 .292 11.25 4 .43
Cropped wings with ct = 33.22 cm  (13.08 in.) and A = 63° (tested at M = 0.2)
= Q, b Cr Cref Sref Xref
deg| cm | in. cm in, cm in. m2 £t2 cm in.
0.87 0 | 50.80 | 20 83.08 | 32,71 | 61,72 | 24,30 | 0.295 | 3.18 | 36.80 | 14.49
.74 | -40 | 50,80 | 20 | 104.39 | 41.10 | 74.96 | 29.51 .349 1 3.76 |39.37 | 15,50
1.07 40 | 50,80 | 20 62.31 | 24.53 | 48.92 | 19.26 .242 1 2.60 | 34.67 | 13.65
Cropped-arrow wing with ¢t = 11.81 cm (4.65in,) and A = 63° (testedat M =0.2)
R Q, b Cr Cref Sref Xref
deg cm | in. | cm in, cm in. m?2 ft2 cm in,
1.92 | 38.86 | 50.80 | 20 | 41.20 { 16,22 |29.21 | 11.50 ; 0.135 | 1.45 |27.61 |10.87
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(d) Cropped arrow (2).

Figure 11.- Concluded.
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Figure 14.- Effect of edge shaping on Cy for AR =2 rectangular wings at M =0,

47




Present method

AR (ref.6)

T 4 T T JEA Wt Ti17T T
T +} ISeanasuet T T T
R T N H
F : T innEeNaa
+
T T 1 T 1 SENE 1 +
t Hr e T T i T T H
t : BaE Ry T T 1
- - L — N 1 -
T i TR i
T I iaaaa et ! s T IBESssueEs
e Sa ; pus ! " 1
e : o
HHH Ecsas T SsanEas naam
N ? I + Pt
T ' T 1T ju 7 joa swus
et H TN 1 _7|i
1 1 1 b8 by T ImEa B
Sessa! S8 NI NG
] — . IEH e
N R e
P HERT T : luwm . L sasase :
ANEEERbuSy RS saRESEES 1 N T
M Vu x“I. ’W 18 + H< + 1B ¢ ,Maﬁ 1
NI T N )y T
SRGS! - TN ™ I AR B BEE
N AR o m
jnan T
T ] 1 1 1 + :
B 8a i H= 1 T
e sae. S8 = I T
Tt 1 1 N T 1 HH
" :
T NN RS N T T s T
+ B H + -+ T 1 T
) 1 T T T l T
juy T T T inm e
a5e, Th : as.5e: iassunnni
t_u_n» o nws I amui
HA T +H ans
=t jaa s -+ T
| B I 1 llwﬂ. N T
1 t wsuEs N8 N T
jages =s uag 1 manss ian
t " ; T SERR R
L —.nae " 8¢ " T
o NS EESES EESNS SAEDE SRREE S ) L HNEAE " Ay YSANRS 5 1\ |EENSNE AESS\ ¢-.A0a seASSSE RSN RERS a
T i ) s ]
» T 1 .
. "
o T +
11 T )i
: o
=aq T 181
n o no s : st ; :
asasan i Saasas
. jEses : N as
y — — Al e it Sasassast
O 2 T T 1T ) T
t Inwms T
: T s ' ns
1L 1T 1 R, 1
] 7 T H 17
I T 1 I T i T
! i H= H
7 : —+ t
—w_ 4 1 IT } Il I
I SaREe
o Ine s T 111
1 t t I
L ﬂmx 1
HH T 1t 18 YamRESSS
(O Sasaist ﬁ S SEanss
t X
T 1 H
HHHH - + 5
. T & ,——‘h + M,F H
IREEE N T 17T T 8
inas| IS8 Snna: sussazne nae 18 06 W
I ] Ou EREEE O jnw m b Ww_
HHH FH HIHHH |
: s A IR +
maae: 1 SESS0REEES NS Iﬂﬂ
= T an mvas
. T T
e A H
H+ i I 1T RS s
18881 T H
T 1
et 1T 1 1 1
1 T 8
o T e
.

O

24

20

16

12

a,deg

Figure 15. - Effect of aspect ratio on Cj, for rectangular wings with round leading

edges and vertical sides at M = 0 (GoOttingen 409 airfoil; thickness ratio = 0.126),

48




‘0 =N e suodwNSSE UOTIIPUOD 83ps JUSIIJIIP UM pojeloosse Suim Jendueload jo uorjerIeA Seaq -°9f oandig

60'0 = 10 (®)
0
0
200°
¥00"
Jdov

900°

3’ dinyg 3 dupys ———] 800
'3'S dubyg 37 punoy ------
N
MO|{ PayoDLy .

49




‘penunuo) - 91 dAndig
(@)

020 ='1D
es

dipys ¢-3 dibus
dipyg '3 punoy
] h\%o

MO|4 PRYIDHY

IRER2 2R

50




‘panunuoy -°91 sandig
'gg'0 =1 (9)
a4
o't 2’ 82 ve 02 9’| 2’ 8’ 14 0

i i T i iS55s SisRIaAaRA sunnE ! ASSESETRnsatnnansh] SUBRESERAE A T ERESEES AERRRBARS T T T o
1 bt £ R Smaes SRaRanusae snaesssmt] tasun sRERE SR2E) fosaasnsanans sam: S84 Spenananas 5ot 1
Inanat 1 1 I o T i inma san )y ol 1t 00; T t
} as sun: Sonsseses enas, T 1 T 1
- 1 T RN
1 1T 1147 1 -+
: iana + t
t T Ht t
i TT1T H=T
T Tt
H nsadna: t L i ones smamn sanas o s T
T (3838 Sapassnnas anmnas; SSssaasasssansns sax:
L T _V, T
H oua: = t 1 T H T .
t aans H t janadans
i ! T 1 5 : ; e AV,
i T Bu ) + T 4 31 I T 1
T T T
t o T e I T
H 1 T T T 11 t o, 1
HHE T T T
T t 1 1 SEE0E0E Sbann Suannn i t et
t 1 IEeOn SRSsSaausE She! I 1 " nssaun e T
t + " T
1 11 AR o8 ant 1
Tt T T T T
1 H 11 inamuos amacesuass sana: T T t
T
 BERE| T IR S8l =7 a7 T “« m
I SnsessEsRaisann s I 1 t ‘VO.
== Ht
8 T T T
1 &
i H
8 T T HHH 1
117 T « w + __
] 1 B inassansaemenES!
¥ . T
t t 1 " 1
1 HT T T t T
1 T I
1 T
t T T
t
] ? ; oo.
H T H+ T
T jaas T
i HH I
T HH T 1 t
HHHT T t tHy
T T T T inas oo,
HHT HrHT HH H1
T 1 T e
T+ t T iosunaasags
T HHH T
b T + )
1 i T T
1 T T -
' mo
T
H T
H -
I + masa
T ¥ T
T s o T ] T T
T ] I I X
7 1 T o
T T 1 T
& 1 t 1 T b t
t
t
HHH t
H asaas: T
t
I T 1
t Baannes coaa: i !
S I b T t
T it T s onna: HT
'3'S daoys “*3-7 dubyg — — b
= + I
angatanuEnns: LT
T
¢ T ona aa; o th
J JD b uno e saaad :
—=—---t i o
T t
Sea nana, T T
- l_ SeeaRuanas ausa: T HH
T
qt\ OI.I b i T
' smesananssm T +
N T 82 ss: Y
IS FNERE Saa] Ot
T T a5,
T T
;o m B PRSI I H T
INB SRS NA_ T JuS 11T
:

51



‘pepniouo) - 91 oandid

'05°0 = 10 (P)

Y

3

.u..,_.EEw _ rkmmw

'3's dipyg '3 pUnoy - -

4,10 —=—

MOl POYODHY —|

1oz

Ay

52




O Experiment

0% L.E.suction
———-100% L.E.suction

a,deg

Figure 17.- Effect of aspect ratio on some static longitudinal aerodynamic
characteristics for sharp-edged rectangular wings at M = 0.2,
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Figure 17.- Continued.
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Figure 17.- Continued.
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Figure 18.- Some static longitudinal aerodynamic characteristics of a sharp-edged
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notched rectangular wing, MR =1,0; M=0.2; A= 1.435,
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Figure 19.- Effect of taper ratio on some static longitudinal aerodynamic characteristics

for cropped delta wings with A = 63° and NACA 63A002 airfoils at M = 0.6. Experi-

ment obtained from reference 18.
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Figure 20.- Effect of trailing-edge sweep on some static longitudinal aerodynamic
characteristics for sharp-edged wings with constant tip chord Ao-g = 0.4, and
A=63° at M=0.2.
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Figure 21.- Some static longitudinal aerodynamic characteristics of a sharp-edged
cropped arrow wing having Ag_g=0.19, A= 63°, and £ = 38.86° at M=0.2.
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